Molecular organization and dynamics of the melatonin MT₁ receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling.

نویسندگان

  • Pascal Maurice
  • Avais M Daulat
  • Rostislav Turecek
  • Klara Ivankova-Susankova
  • Francesco Zamponi
  • Maud Kamal
  • Nathalie Clement
  • Jean-Luc Guillaume
  • Bernhard Bettler
  • Céline Galès
  • Philippe Delagrange
  • Ralf Jockers
چکیده

Functional asymmetry of G-protein-coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT₁ receptor, which directly and constitutively couples to G(i) proteins and the regulator of G-protein signalling (RGS) 20. The molecular organization of the ternary MT₁/G(i)/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex. On the basis of the reported crystal structures of G(i) and the RGS domain, we propose a model wherein one G(i) and one RGS20 protein bind to separate protomers of MT₁ dimers in a pre-associated complex that rearranges upon agonist activation. This model was further validated with MT₁/MT₂ heterodimers. Collectively, our data extend the concept of asymmetry within GPCR dimers, reinforce the notion of receptor specificity for RGS proteins and highlight the advantage of GPCRs organized as dimers in which each protomer fulfils its specific task by binding to different GPCR-interacting proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular organization and dynamics of the melatonin MT1 receptor/RGS20/Gi protein complex reveal asymmetry of receptor dimers for RGS and Gi coupling

Thank you very much for submitting your research manuscript for consideration to The EMBO Journal editorial office. The comments enclosed below, reveal that all expert referees are aware of the potential insight your study could provide to the field of GPCR-signaling. However, careful reading of their reports also confirms that significant additional work and important controls are needed to co...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Comparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking

Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 29 21  شماره 

صفحات  -

تاریخ انتشار 2010